Коричневый карлик

Korichnevyiy-karlik-2MASSJ22282889-431-026[1]

Коричневый карлик в изображении художника

Коричневые или бурые карлики («субзвёзды» или «химические звёзды») — субзвёздные объекты (с массами в диапазоне от 0,012 до 0,0767 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера). Так же как и в звёздах, в них идут термоядерные реакции ядерного синтеза на ядрах лёгких элементов (дейтерия, лития, бериллия, бора), но, в отличие от звёзд главной последовательности, вклад в тепловыделение таких звёзд ядерной реакции слияния ядер водорода (протонов) незначителен, и, после исчерпания запасов ядер лёгких элементов, термоядерные реакции в их недрах прекращаются, после чего они относительно быстро остывают, превращаясь в планетоподобные объекты, то есть такие звёзды никогда не находятся на главной последовательности Герцшпрунга — Рассела. В коричневых карликах, в отличие от звёзд главной последовательности, также отсутствуют шаровые слои лучистого переноса энергии — теплоперенос в них осуществляется только за счёт турбулентной конвекции, что обуславливает однородность их химического состава по глубине.

Brown_Dwarf_Gliese_229B[1]

Коричневый карлик (меньший объект) вращающийся вокруг звезды Gliese 229, которая расположена в созвездии Зайца около 19 световых лет от Земли. Коричневый карлик Gliese 229B имеет массу от 20 до 75 масс Юпитера.

Коричневые карлики были первоначально названы чёрными карликами, и классифицировались как тёмные субзвёздные объекты, свободно плавающие в космическом пространстве и имеющие слишком малую массу, чтобы поддерживать стабильную термоядерную реакцию. В настоящее время понятие чёрный карлик имеет совсем другое значение.

В ранних моделях строения звёзд считалось, что для протекания термоядерных реакций масса звезды должна быть хотя бы в 80 раз больше массы Юпитера (или 0,08 массы Солнца). Гипотеза о существовании плотных звездоподобных объектов с массой меньше указанной (коричневые карлики) была выдвинута в начале 1960-х годов. Считалось, что образование их протекает во многом подобно образованию обычных звёзд, но обнаружить их очень сложно, так как они практически не испускают видимого света. Наиболее сильное излучение коричневых карликов наблюдается в инфракрасном диапазоне.

Но на протяжении нескольких десятилетий наземные телескопы, работающие в этом диапазоне, имели слишком низкую чувствительность и поэтому были неспособны обнаружить коричневые карлики. Позднее было выдвинуто предположение, что в зависимости от компонентов, участвующих в формировании звезды, критическая масса, необходимая для протекания такого же, как и в обычной звезде, термоядерного синтеза гелия с участием водорода, составляет 75 масс Юпитера. Субзвёздные объекты, достаточно быстро сформировавшиеся сжатием туманности, могут иметь массу меньше 13 масс Юпитера. В них вообще исключено протекание каких-либо термоядерных реакций.

С 1995 года, когда было впервые подтверждено существование коричневого карлика, было найдено более сотни подобных объектов. Считается, что они составляют большинство космических объектов в Млечном Пути. Самые близкие из них к Земле — два карлика в системе Луман 16, находящиеся на расстоянии 6,5 световых лет от Солнца в созвездии Паруса, одиночный карлик WISE 1506+7027 в созвездии Малая Медведица (11,1 св. лет), обращающиеся друг вокруг друга компоненты B и C в тройной системе ε Индейца (12 св. лет), коричневый карлик в двойной системе SCR 1845-6357 в созвездии Павлина (12,6 св. лет) и UGPS 0722-05 в созвездии Единорога (13,4 св. лет).

В 2006 году, при наблюдении за зоной интенсивного звёздообразования в Туманности Ориона, впервые удалось непосредственно измерить массы двух коричневых карликов в затменно-переменной двойной системе Гевелий 240, которые оказались равны 5,5 % и 3,5 % от массы Солнца.

450px-Relative_star_sizes-ru.svg[1]

Сравнительные размеры коричневых карликов Глизе 229B и Тейде 1 с Юпитером и Солнцем.

Литий: Коричневые карлики, в отличие от звёзд с малой массой, содержат литий. Это происходит из-за того, что звёзды, имеющие достаточную для термоядерных реакций температуру, быстро исчерпывают свои первоначальные запасы лития. При столкновении ядра лития-7 и свободного протона образуются два ядра гелия-4. Температура, необходимая для этой реакции, немного ниже, чем температура, при которой возможен термоядерный синтез с участием водорода. Конвекция в звёздах является причиной полного истощения запасов лития, который из холодных наружных слоёв постепенно попадает в горячие внутренние и там сгорает. Следовательно, наличие литиевых линий в спектрах кандидатов на коричневые карлики является хорошим признаком их субзвёздной структуры. Такой подход к различению коричневых карликов и звёзд с малой массой впервые был предложен Рафаэлем Реболо и его коллегами и получил название «литиевый тест».

В то же время, литий присутствует в составе очень молодых звёзд, не успевших ещё сжечь его. Более тяжёлые звёзды, такие как наше Солнце, содержат литий в верхних слоях атмосферы, которые слишком холодны для реакций с его участием. Но такие звёзды легко отличимы от коричневых карликов по размеру. С другой стороны, тяжёлые коричневые карлики (порядка 65—80 M_J) способны истощить запасы лития в начальные периоды своей жизни, то есть примерно за полмиллиарда лет. Таким образом, «литиевый тест» не совершенен.

Метан: В отличие от звёзд, некоторые коричневые карлики на заключительном периоде своего существования достаточно холодны, чтобы за долгое время накопить в своей атмосфере обозримое количество метана. Примером может служить Gliese 229.

Яркость: Звёзды главной последовательности, остывая, в конечном итоге достигают минимальной яркости, которую они могут поддерживать стабильными термоядерными реакциями. Это значение яркости в среднем составляет минимум 0,01 % яркости Солнца. Коричневые карлики остывают и тускнеют постепенно на протяжении своего жизненного цикла. Достаточно старые карлики становятся слишком тусклыми, чтобы считаться звёздами.

Отличительным свойством коричневых карликов является то, что они имеют радиус, приблизительно равный радиусу Юпитера. В массивных коричневых карликах (60—80 M_J) определяющую роль, как и в белых карликах, играет давление вырожденного электронного газа (ферми-газа). Объём лёгких коричневых карликов (1—10 M_J) определяется действием закона Кулона. Результатом всего этого является то, что радиусы коричневых карликов различаются всего на 10—15 % для всего диапазона масс. Из-за этого отличить их от планет достаточно трудно.

Кроме того, многие коричневые карлики не способны поддерживать термоядерные реакции. Лёгкие (до 13 M_J) — слишком холодны и в них невозможны даже реакции с участием дейтерия, а тяжёлые (более 60 M_J) остывают слишком быстро (приблизительно за 10 миллионов лет) и тем самым теряют способность к термоядерному синтезу. Но всё же существуют способы отличить коричневый карлик от планеты:

Измерение плотности. Все коричневые карлики имеют приблизительно одинаковый радиус и объём. Следовательно, объект с массой более 10 M_J скорее всего не является планетой.

Наличие рентгеновского и инфракрасного излучения. Некоторые коричневые карлики излучают в рентгеновском диапазоне. Все «тёплые» карлики излучают в красном и инфракрасном диапазонах, пока не остынут до температуры, сопоставимой с планетарной (до 1000 K).

Один из механизмов происхождения коричневых карликов схож с планетарным. Коричневый карлик формируется в протопланетном диске на его окраине. На следующем этапе их жизни они под воздействием окружающих звёзд выбрасываются в окружающее пространство их родительской звезды и образуют большую популяцию самостоятельных объектов.

В отличие от звёзд главной последовательности, минимальная температура поверхности которых составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. В отличие от звёзд, которые сами себя разогревают за счёт внутреннего синтеза, коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Свойства коричневых карликов, переходных между планетами и звёздами по массам, вызывают особый интерес астрономов. Год спустя после открытия первого объекта этого класса в атмосферах коричневых карликов были обнаружены погодные явления. Выяснилось, что коричневые карлики также могут иметь собственные спутники.

Коронографы. Часто используются для обнаружения наиболее тусклых объектов на фоне ярких видимых звёзд, включая Gliese 229B.

Сенсорные телескопы, оснащённые ПЗС-матрицей, используются для поиска тусклых объектов в удалённых звёздных скоплениях, таких как Teide 1.

Широкопольные искатели позволяют обнаруживать одиночные тусклые объекты, такие как Kelu-1 (расстояние — 30 световых лет).

1995 год. Обнаружен первый коричневый карлик. Тейде 1, объект спектрального класса M8 в скоплении Плеяд, был идентифицирован с помощью ПЗС-камеры в Испанской обсерватории Роке-де-лос-Мучачос Канарского института астрофизики. Обнаружен первый метановый карлик Глизе 229B, вращающийся вокруг красного карлика Глизе 229A (20 световых лет от Солнца). Обнаружение было выполнено с использованием адаптивной (самонастраивающейся) оптики, позволяющей улучшить качество снимков, сделанных при помощи полутораметрового рефлектора в Паломарской обсерватории в южной Калифорнии. Последующая инфракрасная спектроскопия, выполненная 5-метровым телескопом Хейла, показала изобилие метана в составе карлика.

1998 год. Обнаружен первый коричневый карлик, излучающий рентгеновские лучи. Cha Halpha 1, объект спектрального класса M8 в тёмном облаке Хамелеон I, классифицирован как источник рентгеновского излучения схожий с конвективными звёздами позднего типа.

15 декабря 1999 года. Зафиксирована первая вспышка коричневого карлика в рентгеновском диапазоне. Группа учёных Университета Калифорнии при помощи телескопа Чандра наблюдала 2-часовую вспышку объекта LP 944-020 (60 M_J, 16 световых лет от Солнца).

27 июля 2000 года. Зафиксировано первое излучение коричневого карлика в радиодиапазоне (дискретное и непрерывное). Наблюдения за объектом LP 944—020 производились группой студентов при помощи Очень большого массива радиотелескопов и их результаты были опубликованы в британском журнале Nature.

Астероидный_диск_вокруг_коричневого_карлика

Астероидный диск вокруг коричневого карлика. Вид с гипотетической планеты с расстояния около 3 млн километров.

Последние наблюдения за известными коричневыми карликами выявили некоторые закономерности в усилении и ослаблении излучения в инфракрасном диапазоне. Это наталкивает на мысль о том, что коричневые карлики затянуты относительно холодными, непрозрачными облаками, скрывающими горячую внутреннюю область. Считается, что эти облака находятся в постоянном движении из-за сильных ветров, гораздо более сильных, чем известные штормы на Юпитере.

Рентгеновские вспышки, зафиксированные в 1999 году свидетельствуют о наличии у коричневых карликов изменяющихся магнитных полей, схожих с магнитными полями лёгких звёзд.

В 2005 году в созвездии Хамелеона в регионе звёздообразования Chameleon I, были обнаружены коричневые карлики, у которых было подтверждено наличие аккреционного диска, что является характерным для молодых звёзд. При помощи данных космического телескопа Спицер, Хаббл и наземного телескопа в этом регионе обнаружен коричневый карлик Cha 110913-773444. Объект расположен на расстоянии в 500 световых лет от Солнца и может находиться в процессе формирования мини-солнечной системы. Астрономы из Университета Пенсильвании обнаружили нечто схожее с диском газа и пыли, сильно напоминающий протопланетный диск, из которого, как считается, образовалась наша Солнечная система. Cha 110913-773444 — самый маленький из известных на сегодняшний день коричневых карликов (8+7−3 M_J). Кроме того, если он на самом деле сформировал планетарную систему, то он будет самым маленьким известным объектом, имеющим подобную систему.

Коричневые карлики, несмотря на то, что неспособны поддерживать термоядерные реакции в течение миллионов или миллиардов лет так, как это делают звёзды, в какой-то момент жизни всё же это делают. Температура поверхности коричневых карликов варьирует в зависимости от массы и возраста коричневого карлика от планетной до температуры звёзд нижнего класса класса M. Поэтому для коричневых карликов были выделены специальные спектральные классы: L и T. В качестве теории выделялся ещё более холодный спектральный класс Y, позднее были обнаружен ряд объектов, соответствующих этому классу. Спектральный класс коричневых карликов постепенно сдвигается в сторону более холодного: коричневые карлики остывают, причём чем более массивен коричневый карлик, тем медленнее он остывает.

Массивные коричневые карлики, близкие к красным карликам, на ранних стадиях после формирования могут иметь спектральный класс, начиная с M6.5 и позднее. Постепенно, как правило, они остывают, переходя в класс L.

220px-L-dwarf-nasa-hurt[1]

Художественное изображение L-карлика.

Главной особенностью спектрального класса M, самого холодного спектрального класса звёзд главной последовательности, является наличие полос поглощения таких соединений, как оксид титана (II) и оксид ванадия (II). Тем не менее после обнаружения коричневого карлика GD 165 B, который, в свою очередь, вращается вокруг белого карлика GD 165 A, было установлено, что спектр его не имеет в себе линий поглощения данных соединений. Последующие исследования спектра дали возможность выделить новый спектральный класс L. В плане спектральных линий он совсем не похож на M. В красном оптическом спектре линии оксидов титана и ванадия всё ещё были сильны, но также были и сильные линии гидридов металлов, например FeH, CrH, MgH, CaH. Также были сильные линии щелочных металлов и йода.

По данным на апрель 2005 года, было обнаружено уже свыше 400 карликов класса L.

220px-T-dwarf-nasa-hurt[1]

Художественное изображение T-карлика

GD 165 B является прототипом L-карликов. Аналогично, коричневый карлик Глизе 229 B является прототипом второго нового спектрального класса, который назвали T-карликом. В то время как в ближнем инфракрасном (БИК) диапазоне спектра L-карликов преобладают полосы поглощения воды и монооксида углерода (CO), в БИК-спектре Глизе 229 B доминируют полосы метана (CH4). Подобные характеристики до этого вне Земли были обнаружены только у газовых гигантов Солнечной системы и спутника Сатурна Титана. В красной части спектра вместо полос FeH и CrH, характерных для L-карликов, наблюдаются спектры щелочных металлов — натрия и калия.

Эти различия позволили ввести отдельный спектральный класс T, в первую очередь на основе линий метана. Из-за наличия метана в составе звезды этот класс также называют иногда «метановыми карликами».

Согласно теории, L-карликами могут являться очень маломассивные звёзды и массивные коричневые карлики. T-карликами могут являться только сравнительно маломассивные коричневые карлики. Масса T-карлика обычно не превышает 7 % от массы Солнца или 70 масс Юпитера. По своим свойствам карлики класса T схожи с газовыми планетами-гигантами. Температура их поверхности составляет порядка 700—1300 К. На ноябрь 2010 года обнаружено порядка 200 коричневых карликов спектрального класса T.

Благодаря влиянию спектра молекулярных соединений и спектров натрия и калия, которые сильно выделяют также зелёную часть спектра T-карликов, наблюдатель бы увидел такой объект не бурым, а скорее розовато-синим. В ноябре 2010 года была впервые обнаружена двойная система, состоящая из «метанового карлика» ULAS 1459+0857 и белого карлика LSPM 1459+0857.

220px-WISE_1828+2650_Brown_dwarf[1]

Художественное изображение Y-карлика WISE 1828+2650.

Спектральный класс Y – этот спектральный класс долгое время существовал только в теории. Он был смоделирован для ультра-холодных коричневых карликов. Температура поверхности коричневых карликов теоретически должна была быть ниже 700 K (или 400 °C), что делало такие коричневые карлики невидимыми в оптическом диапазоне, а также существенно более холодными, чем «горячие юпитеры».

В 2011 году группа американских учёных заявила об обнаружении коричневого карлика с температурой поверхности 97±40 °C. Но данные о CFBDSIR 1458+10 B пока не напечатаны в рецензируемом журнале.

Другие холодные коричневые карлики: (CFBDS J005910.90-011401.3, ULAS J133553.45+113005.2 и ULAS J003402.77−005206.7) имеют температуру поверхности 500—600 К (200—300 °C) и относятся к спектральному классу Т9. Спектр их поглощения — на уровне длины волны в 1,55 мкм (инфракрасная область).

В августе 2011 года американские астрономы сообщили об открытии семи ультрахолодных коричневых карликов, эффективные температуры которых лежат в диапазоне 300—500 К: WISE J014807.25−720258.8, WISE J041022.71+150248.5, WISE J140518.40+553421.5, WISE J154151.65−225025.2, WISE J173835.52+273258.9, WISE J1828+2650 и WISE J205628.90+145953.3. Из них только WISE J0148−7202, был отнесён к классу Т9.5, а остальные — Y классу. Температура WISE J1828+2650 ~ 25 °C, а коричневый карлик WISE 1541-2250, находящийся в 9 световых годах от Солнца (2,8+1,3−0,6 парсек), может отодвинуть красный карлик Ross 154 с седьмого на восьмое место в списке ближайших с Солнцу звёздных систем.

Основным критерием, который отделяет спектральный класс Т от Y, считается наличие полос поглощения аммиака в спектре. Однако сложно идентифицировать, есть ли там эти полосы или нет, так как поглощать могут также такие вещества как метан и вода.

2M1207 — первый из обнаруженных коричневых карликов

OTS 44 — самый маленький коричневый карлик, являющийся центром газопылевого облака (более лёгкие газовые объекты уже относятся к классу планемо или экзопланет).

WISE 1828+2650 — самый холодный из известных коричневых карликов. Его температура — всего 25 °C.

По материалам Wikipedia