Тритон
![800px-Triton_moon_mosaic_Voyager_2_(large)[1]](https://aboutspacejornal.net/wp-content/uploads/2016/01/800px-Triton_moon_mosaic_Voyager_2_large1-1.jpg)
Тритон. Снимок сделан аппаратом Вояджер-2.
Назван в честь Тритона — бога морских глубин в греческой мифологии. Название было предложено Камиллом Фламмарионом в 1880 г., однако вплоть до середины XX века более употребительным было просто «спутник Нептуна» (второй спутник Нептуна Нереида был открыт только в 1949 г.).
Предполагается, что Тритон имеет массивное каменно-металлическое ядро, составляющее до 2/3 его общей массы, окружённое ледяной мантией, с коркой водяного льда и слоем азотного льда на поверхности. Содержание водяного льда в составе Тритона оценивается от 15 до 35 %.
Тритон — один из немногих геологически активных спутников в Солнечной системе, со сложной геологической историей, о которой свидетельствует криовулканизм, следы тектонической активности и замысловатый рельеф с многочисленными гейзерами, извергающими азот. Давление разреженной азотной атмосферы составляет менее 1/70000 от давления земной атмосферы на уровне моря.
Открытие
Тритон был открыт английским астрономом Уильямом Ласселом 10 октября 1846 года, всего через 17 дней после открытия Нептуна немецкими астрономами Иоганном Готтфридом Галле и Генрихом Луи д’Арре.
Джон Гершель, известный английский астроном и физик, после обнаружения Нептуна написал Ласселу письмо с предложением попробовать найти у планеты спутники. Лассел этим и занялся, и уже спустя 8 дней открыл Спутник Нептуна. Также Лассел утверждал, что наблюдал у Нептуна кольца. И хотя кольца Нептуна действительно есть, официально они были открыты лишь в 1968 году. Поэтому, утверждение Лассела о наблюдении колец подвергается сомнению.
Тритон был назван в честь древнегреческого бога Тритона, сына Посейдона. Впервые название «Тритон» упоминается в 1880 году в трудах Камиля Фламмариона, хотя это название принято много лет спустя. Хотя Уильям Лассел участвовал в спорах о названии тех или иных спутников планет (Гипериона, Ариэля, Умбриэля), он не дал Тритону названия. Вплоть до 1949 года, когда был открыт второй спутник Нептуна Нереида, Тритон назывался просто Спутником Нептуна.
Орбита
Тритон имеет необычную орбиту. Он движется в направлении, обратном вращению Нептуна, при этом его орбита сильно наклонена к плоскости экватора планеты и к плоскости эклиптики. Это единственный крупный спутник в Солнечной системе, движущийся в обратном направлении. Ещё одна особенность орбиты Тритона — она представляет собой почти правильную окружность.
Особенности строения и орбитального движения Тритона позволяют предположить, что он возник в поясе Койпера как отдельное небесное тело, похожее на Плутон, и позднее был захвачен Нептуном. Расчёты показывают, что обычный гравитационный захват был маловероятен. По одной из гипотез, Тритон входил в состав двойной системы и в этом случае вероятность захвата повышается. По другой версии, Тритон затормозился и был захвачен потому, что «задел» верхние слои атмосферы Нептуна.
Приливное воздействие постепенно привело его на орбиту, близкую к окружности, при этом выделялась энергия, расплавлявшая недра спутника. Поверхность застывала быстрее, чем недра, а затем, по мере замерзания и расширения водяного льда внутри спутника, поверхность покрывалась разломами. Возможно, что захват Тритона нарушил систему спутников, уже существовавшую у Нептуна, и необычная орбита Нереиды служит напоминанием об этом процессе.
По одной из гипотез, приливное взаимодействие Нептуна и Тритона разогревают планету, благодаря чему Нептун выделяет больше тепла, чем Уран. В результате Тритон постепенно приближается к Нептуну; когда-нибудь он войдёт в предел Роша и его разорвёт на части — в этом случае образовавшееся кольцо вокруг Нептуна будет более мощным, чем кольца Сатурна.
Поверхность
![800px-PIA02208_Triton[1]](https://aboutspacejornal.net/wp-content/uploads/2016/01/800px-PIA02208_Triton1.jpg)
«Замёрзшее озеро» (справа) с кратером на его поверхности
Для наблюдателя с Земли средний видимый блеск Тритона составляет 13,47m, и Тритон с Земли может быть найден только в достаточно крупный телескоп. Абсолютная величина его тем не менее составляет −1,2m, что вызвано высоким альбедо.
Средняя температура поверхности Тритона составляет 38 К (-235 °C). Это настолько холодная поверхность, что азот, вероятно, оседает на ней в виде инея или снега.
![1280px-Triton_(artist's_impression)[1]](https://aboutspacejornal.net/wp-content/uploads/2016/01/1280px-Triton_artists_impression1.jpg)
Разрежённая атмосфера Тритона в представлении художника
![800px-Triton_(moon)[1]](https://aboutspacejornal.net/wp-content/uploads/2016/01/800px-Triton_moon1.jpg)
Южная полярная шапка Тритона (занимает верхнюю половину снимка)
Как и на Плутоне, на Тритоне азотные льды покрывают около 55 % поверхности, 20-35 % приходится на водяной лёд и 10-25 % на сухой лёд. Также поверхность Тритона (в основном в южной полярной шапке) покрыта незначительными количествами замёрзших метана и угарного газа — 0,1 % и 0,05 % соответственно.
На поверхности Тритона мало ударных кратеров, что говорит о геологической активности спутника. По мнению ряда исследователей, возраст поверхности Тритона не превышает 100 млн лет. В полученных «Вояджером-2» данных было зафиксировано всего 179 кратеров, ударное происхождение которых не подвергается сомнению. Для сравнения, на Миранде, спутнике Урана, зафиксировано 835 кратеров. При этом площадь поверхности Миранды составляет 3 % от площади поверхности Тритона. Самая большая из найденных ударных структур на Тритоне, названная «Мазомба», имеет диаметр 27 км. При всём этом на Тритоне обнаружено множество огромных кратеров (некоторые размерами больше «Мазомбы»), происхождение которых связано с геологической активностью, а не со столкновениями.
![800px-PIA01537_Triton_Faults[1]](https://aboutspacejornal.net/wp-content/uploads/2016/01/800px-PIA01537_Triton_Faults1.jpg)
Необычная поверхность, напоминающая «дынную корку»
На поверхности Тритона (в основном в западном полушарии) довольно большую площадь занимает уникальная местность, рельеф на которой напоминает дынную корку. В Солнечной системе такая поверхность не встречается больше нигде. Она так и называется — Местность дынной корки (Cantaloupe terrain). На Местности дынной корки количество ударных кратеров невелико, однако эта местность считается древнейшей на спутнике. Здесь встречаются огромные круглые структуры размерами 30—40 км в диаметре, однако их происхождение не связывают со ударными столкновениями, так как эти структуры приблизительно одинаковых размеров, имеют кривую форму, гладкие высокие края (ударные кратеры в большинстве своём имеют круглую форму, их края пологие и сглаженные). Их происхождение связывают с таким явлением, как диапир.
Насчёт происхождения Местности дынной корки существует несколько теорий. Самая распространённая связывает её происхождение с затоплением после мощной криовулканической активности с последующим затоплением местности и остыванием. После затвердевания лёд расширялся и трескался.
Атмосфера и криовулканизм
![220px-Tritoncloud[1]](https://aboutspacejornal.net/wp-content/uploads/2016/01/220px-Tritoncloud1.jpg)
Облака над Тритоном, протяжённостью около 100 км. Снимок Voyager 2
Последнее исследование атмосферы Тритона, проведенное в марте 2010 года, показало что атмосферное давление на Тритоне возросло в четыре раза по сравнению со значением атмосферного давления, впервые измеренным в 1989 космическим зондом “Вояджер-2”, в то время на Тритоне ещё только начиналась «весна». В настоящее время атмосферное давление на Тритоне составляет 40-65 микробар.
Считается, что ранее Тритон имел более плотную и мощную атмосферу.
![Voyager_2_Triton_14bg_r90ccw_colorized[1]](https://aboutspacejornal.net/wp-content/uploads/2016/01/Voyager_2_Triton_14bg_r90ccw_colorized1.jpg)
Сделанный «Вояджером-2» в 1989 году снимок Тритона. Тёмные струи — следы извержений криовулканов
На Тритоне зафиксированы протяжённые облака на высоте около 100 км над поверхностью.
Вероятный подповерхностный океан
По расчетам группы астрофизиков под руководством Сасваты Хиер-Маджумдер (Saswata Hier-Majumder) из университета штата Мэриленд в городе Колледж-Парк, жидкий океан из смеси аммиака и воды может существовать на Тритоне в том случае, если его первоначальная орбита была достаточно вытянутой. Хиер-Маджумдер и его коллеги сомневаются, что в этом океане могла зародиться жизнь в «земном» смысле этого слова — средняя температура воды в нём не может превышать минус 97 °С. Как предполагают исследователи, такой сценарий представляется весьма вероятным — за несколько миллиардов лет эллиптическая орбита Тритона могла постепенно превратиться в почти идеальный круг, по которому он вращается сегодня. В таком случае жидкий океан под поверхностью Тритона может просуществовать более 4,5 миллиарда лет без замерзания.
Исследования
![220px-Voyager_2_Neptune_and_Triton[3]](https://aboutspacejornal.net/wp-content/uploads/2016/01/220px-Voyager_2_Neptune_and_Triton3.jpg)
Нептун (вверху) и Тритон (внизу) во время «отбытия» Вояджера 2.
Начиная с 1990-х годов, с земных обсерваторий начались наблюдения покрытий Тритоном звёзд, что позволило изучать свойства его разреженной атмосферы. Исследования с Земли показали, что атмосфера Тритона плотнее, чем показали измерения “Вояджера-2”. Было также открыто повышение температуры атмосферы на Тритоне на 5 %. Это связывают с наступлением летнего периода, так как с повышением температуры растёт количество испаряющихся с поверхности газов.
“Вояджер-2” до сих пор остаётся первым и единственным космическим аппаратом, который исследовал Тритон вблизи. Это происходило в июле — сентябре 1989 года.
Интересные факты
- Действующие гейзеры Тритона выбрасывают вещество на несколько километров вверх. Спутник, предположительно, является самым холодным объектом в Солнечной системе из тех, что обладают геологической активностью. Температура на поверхности Тритона составляет в среднем 38 K (-235 °C).
- Масса Тритона составляет 99,5 % от суммарной массы всех известных на данный момент спутников Нептуна. Таким образом, все остальные его спутники имеют очень незначительную массу.
По материалам Wikipedia