Энцелад

PIA18340-SaturnMoonEnceladus-TwoHemispheres-20150727[1]

Изображение Энцелада, сделанное КА «Кассини» 27 июля 2015 года с расстояния примерно 112 000 километров.

Энцелад (др.-греч. Ἐγκέλαδος, англ. Enceladus) — шестой по размеру спутник Сатурна. Был открыт ещё в 1789 году Уильямом Гершелем, но оставался малоизученным до начала 1980-х, когда с ним сблизились два межпланетных зонда «Вояджер». Их снимки позволили определить его диаметр (около 500 км, или 0,1 от диаметра крупнейшего спутника Сатурна — Титана) и обнаружить, что поверхность Энцелада отражает почти весь падающий на неё солнечный свет. «Вояджер-1» показал, что орбита спутника проходит по наиболее плотной части рассеянного кольца Е и обменивается с ним веществом; по-видимому, это кольцо обязано Энцеладу своим происхождением. «Вояджер-2» обнаружил, что рельеф поверхности этого небольшого спутника очень разнообразен: там есть и старые сильно кратерированные области, и молодые участки (возраст некоторых не превышает 100 млн лет).

Пролет АМС  «Кассини» над Энцеладом

В 2005 году изучение Энцелада начал космический аппарат «Кассини», который получил более подробные данные о поверхности спутника и происходящих на ней процессах. В частности, был открыт богатый водой шлейф, фонтанирующий из южной полярной области (вероятно, такие ледяные фонтаны и сформировали кольцо E). Это открытие, наряду с признаками наличия внутреннего тепла и малым числом ударных кратеров в области южного полюса, указывает на то, что геологическая активность на Энцеладе сохраняется по сей день. Спутники в обширных спутниковых системах газовых гигантов часто попадают в ловушку орбитальных резонансов, которые поддерживают сильные либрации или большой эксцентриситет орбиты; у близких к планете спутников это может вызвать периодическое нагревание недр, что в принципе может объяснять геологическую активность.

Энцелад геологически активен: это одно из трёх небесных тел во внешней Солнечной системе (наряду со спутником Юпитера Ио и спутником Нептуна Тритоном), на которых наблюдались активные извержения. Анализ выбросов указывает на то, что они выбиваются из подповерхностного жидкого водного океана. Вместе с уникальным химическим составом шлейфа это служит основой для предположений о важности Энцелада для астробиологических исследований. Открытие шлейфа, помимо прочего, добавило веса к аргументам в пользу того, что Энцелад — источник материи кольца Сатурна Е.

В 2011 году учёные НАСА на «Enceladus Focus Group Conference» заявили, что Энцелад — «наиболее пригодное для такой жизни, какую мы знаем, место в Солнечной системе за пределами Земли».

Астробиолог Крис Маккей из Исследовательского центра NASA в Эймсе в 2011 году заявил, что в Солнечной системе только на Энцеладе обнаружены «жидкая вода, углерод, азот в форме аммиака и источник энергии». В 2014 году было объявлено, что анализ данных, полученных «Кассини», даёт основания предполагать существование океана под поверхностью спутника, сопоставимого по размеру с озером Верхнее.

Именование

Энцелад назван в честь гиганта Энкелада из древнегреческой мифологии. Это название (в числе имён первых семи открытых спутников Сатурна) предложил сын его первооткрывателя — Джон Гершель — в публикации от 1847 года «Результаты астрономических наблюдений, сделанных на мысе Доброй Надежды». Он выбрал эти названия по той причине, что Сатурн, известный в древнегреческой мифологии как Кронос, был предводителем гигантов. Деталям рельефа Энцелада дают имена, взятые из сборника рассказов «Тысяча и одна ночь». Кратеры называют в честь его персонажей, а другие структуры — борозды (fossae), гряды (dorsa), равнины (planitiae) и рытвины (sulci) — в честь упомянутых там географических объектов. По состоянию на май 2013 года Международный астрономический союз официально утвердил 84 названия, из которых 22 — в 1982 году, после пролёта двух КА «Вояджер», а остальные — начиная с 2006 года, на основании снимков «Кассини». Примеры утверждённых названий — кратер Аладдин, борозда Дарьябар, рытвины Самарканд и равнина Сарандиб.

Исследования

Открытие Гершелем

800px-Enceladus_from_Voyager[1]

Вид Энцелада с космического аппарата «Вояджер-2», 26 августа 1981 года

Энцелад был открыт 28 августа 1789 года Уильямом Гершелем в ходе первых наблюдений на 1,2-метровом телескопе (первом в мире по диаметру на то время), хотя неуверенно наблюдался им ещё в 1787 году в 16,5-сантиметровый телескоп. Из-за слабого блеска (+11,7m) и близости к гораздо более яркому Сатурну и его кольцам Энцелад трудно наблюдать с Земли. Для этого нужен телескоп с диаметром зеркала не меньше 15–30 см (в зависимости от атмосферных условий и светового загрязнения). Как и многие другие спутники Сатурна, открытые до начала космической эры, Энцелад был обнаружен во время пересечения Землёй плоскости колец (равноденствия на Сатурне). Поскольку кольца в это время наблюдаются с ребра и почти не видны, спутники легче заметить.

220px-False_color_Cassini_image_of_jets_in_the_southern_hemisphere_of_Enceladus[1]

Спектрозональный снимок «Кассини» — водяной пар в южном полушарии Энцелада

Со времён Гершеля до полётов «Вояджеров» новых данных об Энцеладе появилось мало (но, в частности, был обнаружен водяной лёд на его поверхности).

Миссия «Вояджер»

Два космических аппарата серии «Вояджер» получили первые снимки Энцелада крупным планом. 12 ноября 1980 «Вояджер-1» стал первым аппаратом, пролетевшим мимо Энцелада. Так как расстояние между ним и спутником было довольно большое — 202 000 километров — изображения получились с очень плохим разрешением. Но на них заметна высокая отражательная способность поверхности и отсутствие на ней крупных кратеров, что указывает на её молодой возраст и на существование современной или недавней геологической активности. Кроме того, «Вояджер-1» подтвердил, что Энцелад расположен в плотной части диффузного Е-кольца Сатурна. Учитывая редкость кратеров на поверхности, значительное количество материала, которое необходимо для перекрытия этих деталей рельефа, и незначительную гравитацию спутника, учёные предположили, что Е-кольцо может состоять из частиц, выбрасываемых с поверхности Энцелада.

26 августа 1981 года «Вояджер-2» прошёл гораздо ближе к Энцеладу, чем предыдущий корабль (в 87 010 километрах), что позволило сделать более качественные фотографии. На них видно, что некоторые участки поверхности спутника кратерированы намного сильнее других, что указывает на их намного больший возраст. Например, в северном полушарии на средних и высоких широтах кратеров намного больше, чем на низких. Такая неоднородная поверхность контрастирует с однородной сильно кратерированной поверхностью Мимаса — немного меньшего спутника Сатурна. Молодость поверхности Энцелада стала неожиданностью для научного сообщества, потому что ни одна теория в то время не могла предсказать, что такое небольшое (и холодное по сравнению с высокоактивным спутником Юпитера Ио) небесное тело может быть таким активным. Однако «Вояджеру-2» не удалось выяснить, активен ли Энцелад сейчас и служит ли он источником частиц кольца Е.

Кассини-Гюйгенс

1 июля 2004 года на орбиту Сатурна вышла автоматическая межпланетная станция «Кассини». Исходя из результатов «Вояджера-2», Энцелад рассматривался как приоритетная цель, и потому было запланировано несколько сближений с ним на расстояние до 1500 километров, а также множество наблюдений с расстояния до 100 000 километров. «Кассини» обнаружил, в частности, выбросы водяного пара и сложных углеводородов из южной полярной области. Это дало основания для предположений о наличии жизни в подлёдных слоях Энцелада.

В 2007 году группа учёных разработала математическую модель ледяных гейзеров, выбрасывающих на высоту сотен километров водяной пар и частицы пыли. Модель предполагает наличие жидкой воды под поверхностью спутника.

14 марта 2008 года «Кассини», во время тесного сближения с Энцеладом, собрал данные о его водяных выбросах, а также прислал на Землю новые снимки этого небесного тела. 9 октября 2008 года, пролетая сквозь струи выбросов гейзеров Энцелада, «Кассини» собрал данные, указывающие на наличие жидкого океана под ледяной коркой. В июле 2009 года от «Кассини» получены и опубликованы детализированные данные химического состава этих выбросов, подтверждающие версию о жидком океане как их источнике.

В начале марта 2011 года учёные установили, что тепловая мощность Энцелада значительно выше, чем считалось до этого.

В июне 2011 года группа учёных из Университета Гейдельберга (Германия) обнаружила, что под застывшей корой Энцелада находится океан и пришла к выводу, что вода в подземном океане спутника — солёная.

В 2013 году астроном Мэтт Хедман с коллегами из Корнелльского университета проанализировали 252 снимка «Кассини», где были запечатлены гейзеры Энцелада между 2005 и 2012 годами, и сумели показать связь между приливной силой и активностью Энцелада. На снимках обнаружилось, что при движении Энцелада от апоцентра к перицентру яркость струй падает на три порядка. Кроме того, ученые отметили, что интенсивность выбросов в промежутке между 2005 и 2009 годом уменьшилась в два раза. Данные, полученные в результате анализа, вполне соответствуют геофизическим расчетам, указывающим на то, что трещины в ледяной поверхности спутника во время его максимального удаления от планеты должны испытывать максимальное напряжение и, вероятно, расширяться.

Открытия «Кассини» уже стимулировали разработку проектов исследования Энцелада следующими миссиями. НАСА и ЕКА готовят совместный проект по изучению лун Сатурна — Titan Saturn System Mission (TSSM), где, в числе прочего, будет изучаться и Энцелад. Предполагаемая в 2030-х гг. миссия должна будет пролететь сквозь выбросы криовулканов и не предусматривает спускаемых аппаратов.

Размеры и масса

Enceladus_Earth_Comparison_at_29_km_per_px[1]

Сравнение размеров Земли и Энцелада

Средний диаметр Энцелада — 504,2 км. Это шестой по размеру и массе спутник Сатурна после Титана (5150 км), Реи (1530 км), Япета (1440 км), Дионы (1120 км) и Тефии (1050 км). За ним следует Мимас (397 км). Эти 7 объектов, в отличие от всех меньших спутников Сатурна, имеют довольно правильную шарообразную форму. Таким образом, Энцелад — один из наименьших шарообразных спутников Сатурна.

Во втором приближении форма Энцелада описывается сплющенным трёхосным эллипсоидом. Его размер (по данным станции «Кассини») — 513(a)×503(b)×497(c) километров, где (a) — диаметр вдоль оси, направленной на Сатурн, (b) — диаметр вдоль касательной к орбите, (c) — расстояние между северным и южным полюсом.

Орбита

Enceladus_orbit_2[1]

Вид на северный полюс Сатурна. Показаны орбиты нескольких спутников; орбита Энцелада выделена красным

Энцелад — один из крупнейших внутренних спутников Сатурна и четырнадцатый спутник в порядке удалённости от планеты. Его орбита проходит по самой плотной части кольца Е — самого далёкого кольца Сатурна. Это очень широкое, но очень разреженное кольцо из микроскопических частиц льда или пыли, которое начинается у орбиты Мимаса и заканчивается где-то возле орбиты Реи.

Орбита спутника располагается на расстоянии в 237 378 км от Сатурна и 180 000 км от верхней границы его облаков, между орбитами Мимаса (меньшего спутника) и Тефии (более крупного). Энцелад обращается вокруг Сатурна за 32,9 часа. В настоящее время Энцелад находится в орбитальном резонансе 2:1 с Дионой. Этот резонанс помогает поддерживать эксцентриситет орбиты Энцелада (0,0047), который приводит к регулярному изменению величины приливных сил и, как следствие, к приливному нагреву недр спутника, что обеспечивает его геологическую активность.

Как и большинство спутников Сатурна, Энцелад вращается вокруг него синхронно собственному движению по орбите. Таким образом, он постоянно обращён к планете одной стороной. В отличие от Луны, Энцелад не проявляет либрации вокруг своей оси вращения (по крайней мере, она не больше 1,5°). Тем не менее форма спутника указывает на то, что когда-то у него были либрации с периодом, вчетверо бо́льшим орбитального. Эта либрация, как и резонанс с Дионой, могли обеспечить Энцелад дополнительным источником тепла.

Взаимодействие с кольцом Е

1920px-Saturn's_Rings_PIA03550[1]

Схема колец и спутников Сатурна. В самой плотной части кольца E видно Энцелад

Кольцо Е — самое внешнее кольцо Сатурна. Оно состоит из микроскопических частиц льда или пыли и начинается с орбиты Мимаса, заканчиваясь около орбиты Реи, хотя некоторые наблюдения показывают, что оно простирается даже за орбиту Титана и, таким образом, его ширина — около 1 000 000 километров. Многочисленные математические модели показывают, что данное кольцо неустойчиво и время его жизни составляет от 10 000 до 1 000 000 лет, поэтому для его существования необходимо постоянное пополнение частицами.

E_ring_with_Enceladus[1]

Кольцо Е и Энцелад. Кольцо хорошо заметно благодаря освещению сзади (Солнце находится за 5° от центра снимка)

Орбита Энцелада проходит по самой плотной области этого кольца. Эта область довольно узкая. Поэтому пополнение кольца веществом с Энцелада предполагалось ещё до полёта «Кассини». Его данные это подтвердили.

Enceladus_&_Rings[1]

Энцелад и кольца Сатурна. Снимок сделан КА «Кассини» 29 июля 2015 года с расстояния около 1 млн км. Видны гейзеры в районе южного полюса спутника

Есть два пути наполнения кольца Е частицами. Первый и, вероятно, главный источник частиц — криовулканические факелы южной полярной области Энцелада. Большинство их выбросов падает обратно на поверхность спутника, но некоторые частицы преодолевают его притяжение и попадают в кольцо Е, так как первая космическая скорость для Энцелада составляет всего 866 км/ч. Второй источник частиц — выбросы с поверхности Энцелада при ударах метеоритов. Это справедливо и для других спутников Сатурна, орбита которых проходит внутри кольца Е.

Поверхность

1280px-Map_of_Enceladus_PIA_14937_Dec_2011[1]

Карта поверхности (2011 год)

Первые детальные снимки поверхности Энцелада получил «Вояджер-2». Исследование полученной мозаики высокого разрешения показало, что на спутнике есть по меньшей мере пять различных типов ландшафта, в том числе участки с кратерами, гладкие области и ребристые участки, часто граничащие с гладкими. На поверхности мало кратеров и много своеобразных желобков. Кроме того, там есть длинные трещины и уступы. Эти факты говорят о том, что поверхность Энцелада молодая (несколько сот миллионов лет) и/или недавно обновлённая. Видимо, это связано с его криовулканической активностью.

800px-PIA08409_North_Polar_Region_of_Enceladus[1]

Северная полярная область Энцелада

Энцелад состоит в основном из водяного льда и имеет почти белую поверхность с рекордной в Солнечной системе чистотой и отражательной способностью. Он отражает почти весь падающий свет: его альбедо Бонда превышает 99 %. Соответственно, поглощение света поверхностью очень маленькое, и её средняя температура в полдень достигает только −198 °C (несколько холоднее, чем на других спутниках Сатурна). Геометрическое альбедо Энцелада равно 1,38.

Автоматическая станция «Кассини», достигшая в 2004 году системы Сатурна, обнаружила фонтаны частиц льда высотой в многие сотни километров, бьющие из четырёх трещин в районе южного полюса Энцелада. Из этих частиц образуется «след», обращающийся уже вокруг самого Сатурна в виде кольца. Пока не вполне понятно, что является источником энергии для этой беспрецедентно сильной для столь малого спутника вулканической активности. Им могла бы быть энергия, выделяющаяся в ходе радиоактивного распада, однако в водяном фонтане были обнаружены пылевые частицы и небольшие льдинки. Для того, чтобы «забросить» их на сотни километров вверх, требуется слишком много энергии. Возможно, недра Энцелада «разогревают» приливные волны, однако по сегодняшним оценкам, их энергия на два порядка меньше, чем требуется. В 2010 г. учёные выяснили, что этот нагрев могла бы объяснить либрация при движении по орбите.

Температура поверхности — минус 200 градусов по Цельсию. Есть области с аномально высокой температурой (на 20—30 градусов выше). Наличие на Энцеладе таких участков и атмосферы, а также молодость поверхности говорит о наличии какого-то источника энергии, поддерживающего геологические процессы на спутнике.

Ландшафт

800px-EN004_Painting_on_the_walls[1]

Снимок поверхности Энцелада в псевдоцветах. Видны характерные детали рельефа, в том числе разрушающиеся кратеры. Снимок получен «Кассини» 9 марта 2005 года

«Вояджер-2» обнаружил на поверхности Энцелада несколько типов деталей рельефа тектонического происхождения: жёлоба, уступы, а также пояса впадин и хребтов. Исследования «Кассини» показывают, что тектоника — основной фактор, формирующий рельеф Энцелада. Самые заметные её проявления — рифты, которые могут достигать 200 километров в длину, 5—10 — в ширину и около километра в глубину.

800px-EN004_Moon_with_a_Past[1]

Мозаика поверхности Энцелада с высоким разрешением показывает множество разломов и кратеров (в основном более древних, чем разломы). Снимок «Кассини», 9 марта 2005 года

Другое проявление тектонических процессов Энцелада — это полосы криволинейных борозд и гребней, открытые «Вояджером-2». Они часто отделяют гладкие равнины от кратерированных. Такие участки (например, рытвины Самарканд), напоминают некоторые участки Ганимеда, однако на Энцеладе их рельеф гораздо сложнее. Эти полосы часто идут не параллельно друг другу, а стыкуются под углом наподобие шеврона. В других случаях они приподняты, а вдоль них тянутся разломы и хребты. «Кассини» открыл в рытвинах Самарканд интересные тёмные пятна шириной 125 и 750 метров, которые идут примерно параллельно узким разломам. Эти пятна интерпретируются как провалы.

Кроме глубоких разломов и рельефных полос, на Энцеладе есть и ещё несколько типов ландшафта. Многие из этих разломов собраны в полосы, пересекающие кратерированные участки. Вглубь они распространяются, по-видимому, лишь на несколько сотен метров. На морфологию разломов, проходящих через кратеры, видимо, повлияли своеобразные свойства изменённой ударом поверхности: внутри кратеров разломы выглядят не так, как снаружи. Другой пример тектонических структур Энцелада — линейные впадины, впервые обнаруженные «Вояджером-2», и намного детальнее заснятые станцией «Кассини». Они пересекают участки различных типов, как, например, углубления и пояса хребтов. Это, по-видимому, одни из самых молодых деталей рельефа Энцелада (как и рифты). Но некоторые из них (как и близлежащие кратеры) выглядят сглаженными, что указывает на их больший возраст. Есть на этом спутнике и хребты, хотя они там не так развиты, как, например, на Европе. Их высота достигает одного километра. По распространённости на Энцеладе тектонических структур видно, что тектоника была на нём важным геологическим фактором в течение большей части его существования.

Ударные кратеры

800px-EN003_Degraded_Craters_on_Enceladus[1]

Полуразрушенные кратеры на Энцеладе. Снимок «Кассини» 17 февраля 2005 года. Внизу слева направо тянутся рытвины Хама; выше видны кратерированные области

Импактные события — обычное явление для многих объектов Солнечной системы. Большая часть Энцелада покрыта кратерами с различной концентрацией и степенью разрушенности.

«Кассини» сделал детальные снимки ряда кратерированных зон. На них видно, что многие кратеры Энцелада сильно деформированы вязкой релаксацией и разломами. Релаксация поверхности (выравнивание рельефных участков со временем) происходит под действием гравитации. Скорость, с которой это происходит, зависит от температуры: чем теплее лёд, тем легче он выравнивается. Кратеры с признаками вязкой релаксации имеют, как правило, куполообразное дно. Иногда они видны только благодаря приподнятой кромке. Яркий пример сильно релаксированного кратера — Дуниязад. Кроме того, многие кратеры Энцелада пересечены множеством тектонических разломов.

Гладкие равнины

800px-EN003_Samarkand_Sulci[1]

Рытвины Самарканд на Энцеладе. Снимок «Кассини» 17 февраля 2005 года. Справа видно северо-западную часть равнины Сарандиб

Две гладкие равнины — Сарандиб и Дийяр — были открыты ещё «Вояджером-2». Они имеют в основном низкий рельеф и очень слабо кратерированы, что указывает на их относительно молодой возраст. На снимках равнины Сарандиб, сделанных «Вояджером-2», ударных кратеров не видно вообще. На юго-западе от неё есть ещё одна равнинная область, которую крест-накрест пересекают несколько впадин и уступов. Позже «Кассини» получил намного более детальные снимки этих гладких в первом приближении областей, и оказалось, что они пересечены множеством низких хребтов и разломов. Сейчас считается, что эти детали рельефа возникли из-за напряжения сдвига. На детальных фотографиях равнины Сарандиб, снятых «Кассини», видны и небольшие кратеры. Они позволили оценить возраст равнины. Его оценки (в зависимости от принятого значения скорости накопления кратеров) лежат в интервале от 170 миллионов до 3,7 миллиардов лет.

На снимках «Кассини», охватывающих неотснятые ранее участки поверхности, обнаружены новые гладкие равнины (особенно на ведущем полушарии). Эта область (подобно южной полярной области) покрыта не низкими хребтами, а многочисленными пересекающимися системами желобов и горных хребтов. Она находится на стороне спутника, противоположной равнинам Сарандиб и Дийяр. В связи с этим предполагается, что на распределение различных типов рельефа по поверхности Энцелада повлияло приливное воздействие Сатурна.

Южный полярный регион

200px-Fountains_of_Enceladus_PIA07758[1]

Струи вещества, бьющие из-под поверхности Энцелада. Снимок «Кассини»

Изображения, полученные «Кассини» при сближении 14 июля 2005 года, показали своеобразную тектонически деформированную область, расположенную вокруг южного полюса Энцелада и достигающую 60° южной широты. Она испещрена разломами и хребтами. Там мало крупных ударных кратеров, из чего можно заключить, что это самый молодой участок поверхности Энцелада (и всех ледяных спутников среднего размера). По скорости накопления кратеров возраст некоторых участков этой области оценивается в 500 000 лет, а возможно, и меньше. Вблизи центра данной области можно увидеть четыре разлома, ограниченных с обеих сторон хребтами. Они носят неофициальное название «тигровые полосы». Глубина их достигает 500 метров, ширина — двух километров, а протяжённость — 130 километров. В 2006 году они получили собственные названия: рытвины Александрия, Каир, Багдад и Дамаск. Эти разломы, по-видимому, — самые молодые детали околополярной области. Они окружены отложениями крупнозернистого водяного льда (который выглядит бледно-зелёным на спектрозональных снимках, полученных объединением изображений в ультрафиолетовом, зелёном и ближнем инфракрасном диапазоне). Такой же лёд виден и в других местах — в обнажениях и разломах. Его наличие указывает на то, что область достаточно молода и ещё не покрыта мелкозернистым льдом из Е-кольца. Результаты спектрометрии в видимой и инфракрасной области показывают, что зеленоватый лёд в тигровых полосах отличается по составу от льда других участков поверхности Энцелада. Спектрометрическое обнаружение свежего кристаллического водяного льда в полосах говорит о молодости этих участков (моложе 1000 лет) или их недавней переплавке. Кроме того, в тигровых полосах были найдены простые органические соединения, больше нигде на поверхности до сих пор не обнаруженные.

Один из таких районов «голубого» льда в южной полярной области был заснят с очень высоким разрешением во время пролёта 14 июля 2005 года. На фотографиях видно очень сильно деформированные участки, кое-где покрытые глыбами размером 10—100 метров.

800px-Enceladus_south_pole_SE15[1]

Составная карта южной полярной области Энцелада (до 65° ю. широты), сделанная в 2007 году

Граница южной полярной области отмечена хребтами и долинами, образующими Y- и V-образные узоры или параллельными друг другу. Их форма, направление и расположение указывают на их образование из-за изменений формы спутника в целом. Есть два объяснения этих изменений. Во-первых, какой-то фактор мог уменьшить радиус орбиты Энцелада. Из-за этого уменьшился и его период обращения вокруг Сатурна, что привело (благодаря приливному захвату) к ускорению вращения и вокруг своей оси. Это вызвало сплющивание спутника. По другой версии, из недр Энцелада к поверхности поднялась большая масса тёплой материи, что привело к смещению коры относительно недр. После этого форма эллипсоида коры изменилась соответственно новому положению экватора. Но эти версии предсказывают одинаковые следствия для обоих полюсов, а фактически северная полярная область спутника сильно отличается от южной: она сильно кратерированная и, значит, довольно старая. Возможно, это различие объясняется разницей толщины коры в этих областях. На существование такой разницы указывает морфология Y-образных разрывов и V-образных выступов вдоль края южной полярной области, а также возраст прилегающих участков. Y-образные разрывы и продолжающие их разломы, идущие вдоль меридианов, приурочены к относительно молодым участкам с предположительно тонкой корой. V-образные выступы прилегают к старым областям поверхности.

Гейзеры

Состав выбросов из южной полярной области Энцелада по данным масс-спектрометра INMS, установленного на АМС «Кассини»:

Вода — 93 % ± 3 %
Азот — 4 % ± 1 %
Диоксид углерода — 3,2 % ± 0,6 %
Метан — 1,6 % ± 0,6 %
Аммиак, ацетилен, синильная кислота, пропан — следы (<1 %)
Содержание прочих соединений замерить не представляется возможным из-за ограничения на молекулярную массу <99.

В марте 2015 года журнал Nature сообщил об обнаружении на Энцеладе горячих гейзеров, выбросы которых содержат частицы диоксида кремния (SiO2).

В мае 2015 годе в журнале Geochimica et Cosmochimica Acta вышла статья ученых из института Карнеги, в которой были опубликованы результаты по определению кислотности жидкости, выбрасываемой гейзерами Энцелада. Модель океана, построенная авторами исследования на основе данных, полученных зондом “Кассини” с помощью масс-спектрометров и газоанализаторов, показывает, что в веществе струй, а, следовательно, и в водах подповерхностного океана, содержится большое количество растворенной поваренной соли и соды. Они обладают щелочной средой, с pH порядка 11-12, сопоставимым с растворами аммиака. Похожим составом растворенных веществ обладают озеро Моно в Калифорнии и Магади в Кении, в которых обитают как одноклеточные так и многоклеточные организмы, в том числе различные рачки.

Атмосфера

Атмосфера Энцелада очень разреженная, но по сравнению с атмосферами других небольших спутников Сатурна — довольно плотная. В ней 91 % составляет водяной пар, 4 % — азот, 3,2 % — углекислый газ, 1,7 % — метан. Гравитации этого маленького спутника не хватает для удержания атмосферы, следовательно, есть постоянный источник её пополнения. Таким источником могут быть мощные гейзеры или криовулканы.

Внутренняя структура

800px-Enceladus_Cold_Geyser_Model-ru.svg[1]

Одна из возможных схем криовулканизма на Энцеладе.

 До миссии «Кассини» об Энцеладе и его внутренней структуре было известно относительно мало. Станция помогла устранить эти пробелы и дала много информации, нужной для моделирования внутреннего строения Энцелада. Эти данные включают точное определение массы и формы (параметры трёхосного эллипсоида), снимки поверхности с высоким разрешением и некоторую информацию о геохимии спутника.

250px-Enceladus_Roll[1]

Внутренняя структура Энцелада: модель на основе последних данных «Кассини». Коричневым обозначено силикатное ядро, белым — мантия, богатая водяным льдом. Жёлтое и красное — предполагаемый диапир под южным полюсом

Оценка плотности Энцелада по результатам «Вояджеров» указывает на то, что он почти полностью состоит из водяного льда. Но по его гравитационному влиянию на аппарат «Кассини» рассчитано, что его плотность равна 1,61 г/см³ — больше, чем у других ледяных спутников Сатурна среднего размера. Это указывает на то, что Энцелад содержит больший процент силикатов и железа и, вероятно, его недра относительно сильно нагреваются от распада радиоактивных элементов.

Есть предположение, что Энцелад, как и другие ледяные спутники Сатурна, сформировался сравнительно быстро и, следовательно, в начале своего существования был богат короткоживущими радионуклидами (такими как алюминий-26 и железо-60). Их распад мог дать достаточно тепла для дифференциации недр спутника на ледяную мантию и каменное ядро (распад одних только долгоживущих радионуклидов не мог предотвратить быстрое замерзание недр Энцелада из-за его небольшого размера, несмотря на относительно высокую долю камня в его составе). Последующий радиоактивный и приливный нагрев могли поднять температуру ядра до 1000 К, что достаточно для плавления внутренней мантии. Но для поддержания современной геологической активности Энцелада его ядро тоже должно быть в некоторых местах расплавленным. Поддержание высокой температуры этих участков обеспечивает приливный нагрев, который и служит источником современной геологической активности спутника.

Чтобы выяснить, дифференцированы ли недра Энцелада, исследователи рассмотрели не только геохимические модели и его массу, но и форму его лимба. Геологические и геохимические данные указывают на наличие дифференциации. Но форма спутника согласуется с её отсутствием (в предположении, что он находится в гидростатическом равновесии). Но по наблюдаемой форме Энцелада можно предположить и другое: он дифференцирован, но не находится в гидростатическом равновесии, поскольку в недавнем прошлом вращался быстрее, чем сейчас.

Подповерхностный океан

Переданные «Кассини» в 2005 году снимки гейзеров, бьющих из «тигровых полос» на высоту 250 км, дали повод говорить о возможном наличии под ледяной корой Энцелада полноценного океана жидкой воды. Однако сами по себе гейзеры не являются доказательством наличия жидкой воды, а указывают в первую очередь на наличие тектонических сил, приводящих к смещению льда и образованию в результате трения выбросов жидкой воды.

250px-PIA19058-SaturnMoon-Enceladus-PossibleHydrothermalActivity-ArtistConcept-20150311[1]

Предполагаемая схема активности гидротермальных источников

В 2014 году были опубликованы результаты исследований, согласно которым на Энцеладе существует подповерхностный океан. В основу этого вывода легли измерения гравитационного поля спутника, сделанные во время трех близких (менее 500 км над поверхностью) пролетов «Кассини» над Энцеладом в 2010—2012 годах. Полученные данные позволили ученым достаточно уверенно утверждать, что под южным полюсом спутника залегает океан жидкой воды. Размер водной массы сопоставим с североамериканским озером Верхним, площадь составляет около 80 тыс. км² (10 % от площади Энцелада), толщина — около 10 км, а глубины залегания — 30–40 км. Он простирается от полюса до 50-х градусов южной широты. Температура его верхних слоев может составлять около −45°С и с ростом глубины достигать 0…+1 °С, что сравнимо с температурой земных арктических и антарктических вод. Дно, предположительно, каменное. Есть ли вода под северным полюсом Энцелада, остаётся неясным. Наличие же воды на южном полюсе объясняется особенностями приливного разогрева спутника гравитационным воздействием Сатурна, которое обеспечивает существование воды в жидком виде, даже несмотря на то, что средняя температура поверхности Энцелада составляет около −180°С. По имеющимся оценкам, температура океана может достигать 90°С.

В начале марта 2015 года были опубликованы две работы, в которых окончательно подтвердилось наличие океана и следы активности горячих гейзеров на дне подподверхностного океана.

В мае 2015 года учеными из института Карнеги на основе данных с приборов Кассини была определена щелочность среды океана Энцелада, равная 11-12 pH, что является крайне благоприятным фактором для зарождения и поддержания жизни, так как все реакции внутри живых клеток протекают в щелочной среде.

В середине сентября 2015 года астрофизики Корнелльского Университета на основе данных “Кассини”, полученных за семь лет исследований, начиная с 2004 года, уточнили модель подповерхностного океана. Согласно новым исследованиям, опубликованными в журнале Icarus, под поверхностью Энцелада находятся не отдельные водоемы, а глобальный водяной океан, обособленный от поверхности ядра. Прежние исследования, указывавшие на наличие замкнутого водоема в районе южного полюса, хорошо согласовались с наблюдениями “Кассини” за гейзерами, но входили в противоречие с гравитационными измерениями. Новая модель учитывает магнитуду небольших колебаний поверхности, которая возникает при движении Энцелада по орбите вокруг Сатурна, и указывает на наличие глобального океана. В случае, если Энцелад представлял бы собой полностью твердое тело, колебания (либрации) орбиты спутника были бы не столь значительными.

В конце октября 2015 года Планетологи из Японии, Германии и США опубликовали в журнале Nature Communications исследование, согласно которому океан Энцелада является или очень древним, возникшим вместе с форомированием Сатурна, или стал жидким относительно недавно, около 10 миллионов лет назад, в результате смены орбиты или столкновения с каким-то крупным объектом, растопившим часть вод и запустившим реакции окисления на границе между ядром и океаном.

Сведения, собранные зондом после пролета 28 октября 2015 года с рекордного расстояния в 25 км над поверхностью, позволят ответить на вопросы о химическом и молекулярном составе расположенного под поверхностью спутника Сатурна океане.

Органические соединения, обнаруженные «Кассини» в солёных гейзерах спутника в 2005 году, подтверждение существования океана жидкой воды достаточно неглубокого залегания, сопоставимого с Марианской впадиной, наличие скалистой сердцевины из силикатов, высокая щелочность воды и прямые свидетельства гидротермальной активности в совокупности делают Энцелад самым привлекательным местом с Солнечной системе для поиска микробной жизни. Аппаратура «Кассини» не позволит выяснить, есть ли в океане Энцелада сложная органика и, тем более, жизнь. Однако до завершения своей миссии в сентябре 2017 года «Кассини» совершит ещё три сближения со спутником в конце 2015 года, в ходе которых аппарат получит снимки высокого разрешения плохо изученного северного полюса, а также проведет измерения теплового потока, исходящего от южного полюса. Во время сближения 28 октября 2015 года с расстояния 49 км инструменты «Кассини» проведут исследования гидротермальных выбросов, которые помогут ученым понять природу процессов, препятствующих замерзанию подледного океана Энцелада.

В будущих экспедициях предполагается провести спектрографические исследования гейзеров, чтобы получить подробную информацию о составе воды. Не исключен анализ in-situ и даже использование погружаемого аппарата без предварительного бурения ледяной коры, если подтвердятся расчеты Института исследования космоса в Боулдере (США), согласно которым вода, поступающая из подповерхностного океана, несмотря на недельный цикл подъёма на 30-40 км, сохраняет достаточно тепла, чтобы в точке разлома не давать замерзнуть трещинам метровой ширины.

По материалам Wikipedia