Пилотируемый космический корабль «Crew Dragon»

Crew Dragon перед первым запуском

Dragon 2 (также известный как Crew Dragon и Dragon V2) — пилотируемый частный многоразовый космический корабль компании SpaceX, разработанный по заказу НАСА в рамках программы Commercial Crew Development (CCDev), предназначенный для доставки экипажа до 7 человек на Международную космическую станцию и возвращения их на Землю.

Dragon 2 выводится на орбиту ракетой-носителем Falcon 9 со стартового комплекса LC-39A в Космическом центре Кеннеди.

Грузовой вариант корабля Dragon 2 будет использоваться для доставки грузов на МКС, начиная со второй фазы программы снабжения Commercial Resupply Services, заменив используемый в первой фазе программы грузовой корабль Dragon 1. Грузовая и пилотируемая версии Dragon 2 почти идентичны, за исключением специальных технических средств, добавленных в пилотируемую версию: системы аварийного спасения, системы жизнеобеспечения, информационных дисплеев и органов управления, позволяющих пилоту при необходимости использовать ручное управление.

Впервые корабль представлен 30 мая 2014 года Илоном Маском.

16 сентября 2014 года компания SpaceX с тандемом Dragon V2 и Falcon 9 стала одним из двух победителей конкурса в рамках подпрограммы Commercial Crew Transportation Capability (CCtCap) и получила контракт от NASA на сумму 2,6 миллиарда долларов США для завершения разработки корабля и его сертификации для полётов к МКС. Контракт включает в себя до шести (2 гарантированные) коммерческих полётов по смене экипажа МКС с 4 астронавтами на борту.

Первый демонстрационный беспилотный запуск состоялся 2 марта 2019 года, пилотируемый — планируется на июль 2019 года.

28 февраля 2017 года компания объявила, что собирается использовать Dragon V2 для туристических полётов с облётом Луны. Первый полёт с двумя туристами на борту планировался на конец 2018 года, ожидалось, что на транслунную орбиту корабль будет выводиться ракетой-носителем Falcon Heavy. В феврале 2018 года SpaceX отказалась от сертификации Falcon Heavy для пилотируемых полётов в пользу многоразовой системы BFR.

Описание

Dragon 2 представляет собой усовершенствованную пилотируемую версию многоразового аппарата Dragon, которая позволит экипажу добираться до МКС и возвращаться на Землю. В капсуле Dragon 2 одновременно смогут находиться до семи астронавтов, в версии, представленной в сентябре 2015 года, было 5 кресел. В отличие от грузового корабля Dragon он способен стыковаться с МКС самостоятельно, без использования манипулятора станции.

Первоначально в мае 2014 года предполагалась управляемая посадка на двигателях (парашютная схема в качестве резерва) и выдвижные опоры для мягкой посадки. По словам разработчиков, благодаря двигателям SuperDraco аппарат способен приземляться практически в любом месте с точностью вертолёта, а возможность управляемой посадки сохраняется при отказе 2 из 8 двигателей. В случае отказа двигателей посадка выполняется на парашютах. SuperDraco являются первыми двигателями в космической промышленности, изготовление которых возможно по технологии 3D-печати. В дальнейшем было принято решение, что в первых полётах корабль будет приземляться в океан при помощи парашютов, а посадка на землю при помощи двигателей будет использоваться в будущих полётах после завершения процесса сертификации. В 2017 году компания отказалась от управляемой посадки с использованием двигателей SuperDraco из-за сложности сертификации этой системы для пилотируемых полётов. Корабль будет приводняться с использованием парашютов.

Конструкция

Двигатели SuperDraco

Несмотря на внешнее визуальное сходство с грузовым кораблём Dragon, пассажирская версия Dragon V2 содержит массу отличий и усовершенствований, связанных, в том числе, и с повышенными техническими требованиями для кораблей с экипажем.

  • Носовой конус, защищающий стыковочный адаптер во время полёта в атмосфере, имеет скошенную форму и будет многоразовым. Перед стыковкой с МКС конус будет открываться и закрываться после отстыковки.
  • Сам стыковочный адаптер также будет другим. Вместо используемого на грузовом варианте универсального механизма CBM будет использован новый механизм NDS, который поддерживает как полностью автоматическую стыковку, так и ручную, из кабины корабля. Вторая часть механизма стыковки (IDA) была установлена на МКС 19 августа 2016 года.
  • Диаметр 4 смотровых окон в герметическом отсеке корабля будет увеличен.
  • В герметическом отсеке (кабине) для экипажа и груза находятся 2 ряда сидений из углеродного волокна (4+3 места), системы контроля внутренней среды (температуры от 15 до 26 градусов Цельсия) и системы жизнеобеспечения, панель управления с экранами, на которые выводятся все необходимые данные и показатели полёта (телеметрия), и кнопками, дублирующими основные функции космического корабля. Во время полёта астронавты будут одеты в разработанные SpaceX костюмы жизнеобеспечения, которые позволяют выжить в случае разгерметизации кабины.
  • Двигательная установка Dragon V2 состоит из 8 двигателей SuperDraco, которые будут использоваться в качестве системы аварийного спасения и для управляемого приземления, и 16 двигателей Draco, используемых для маневрирования в космосе. Система двигателей разбита на 4 отдельных блока, в каждом по 2 спаренных двигателя SuperDraco и по 4 двигателя Draco. Оба типа двигателей работают на одном виде топлива, смеси монометилгидразина и тетраоксида диазота, и могут многократно перезапускаться. Каждый двигатель SuperDraco может создавать тягу до 73 кН с удельным импульсом 235 с на уровне моря. Однако для повышения устойчивости системы максимальная тяга двигателей, устанавливаемых на Dragon V2, будет снижена до 68 кН. Тяга двигателей SuperDraco регулируется в широком диапазоне, суммарная максимальная тяга 8 двигателей на уровне моря может достигать 545 кН.
  • Служебный отсек, как и в грузовом исполнении корабля, располагается по периметру нижней части капсулы. Содержит:
  1. Авионику, которая была полностью переработана в сравнении с грузовым Dragon.
  2. Систему жизнеобеспечения экипажа.
  3. Систему балансировки капсулы для большей управляемости углом вхождения в атмосферу при возвращении.
  4. Маневровые двигатели Draco.
  5. Сферические композитные резервуары, изготовленные с использованием титана и углепластика, предназначенные для сжатого гелия и компонентов топлива для двигателей SuperDraco и Draco. Гелий используется для создания высокого рабочего давления в камерах сгорания двигателей.
  6. Спаренные двигатели SuperDraco вынесены за периметр капсулы в выступающие двигательные отсеки.
  • Тепловой щит, необходимый для вхождения в атмосферу, будет использовать новое, третье поколение абляционного материала PICA-X.
  • Переработанный негерметический грузовой отсек несколько удлинён в сравнении с грузовой версией, содержит панели солнечных батарей и радиаторы системы терморегуляции корабля. Закрылки помогут стабилизировать корабль при использовании системы аварийного спасения. Разворачивающиеся в широкие крылья панели солнечных батарей будут заменены в целях сокращения количества механизмов и упрощения системы в целом. Вместо этого панели солнечных батарей будут полностью покрывать одну половину внешней поверхности отсека, которая будет повёрнута к солнцу во время полёта в космосе.

Система аварийного спасения

В отличие от распространённой, «тянущей» схемы системы аварийного спасения, состоящей из обтекателя с твердотопливным двигателем на верхушке корабля и отделяемой после выхода аппарата за пределы атмосферы (например, АполлонСоюз, Орион), Dragon V2 будет использовать собственные двигатели SuperDraco(«толкающая» схема) при возможных аварийных ситуациях. Все 8 двигателей будут включаться одновременно для максимально быстрого отдаления от аварийной ракеты-носителя. Обновлённый негерметический отсек с системой закрылков будет оставаться соединённым с капсулой для стабилизации полёта. При достижении высоты 1,5 км негерметический отсек будет отсоединён и начнётся процесс приземления космического корабля. Возможны разные варианты приземления: при помощи системы тормозных и основных парашютов или с использованием двигателей SuperDraco для управляемого приземления на посадочную площадку.

В процессе испытания системы, а также в первых испытательных полётах Dragon V2 к МКС будет использоваться вариант с использованием парашютов. Полностью управляемое приземление на двигателях SuperDraco (без использования парашютов) будет проводиться после лицензирования NASA этого процесса.

Лицензирование корабля Dragon V2 для пилотируемых полётов к МКС в рамках программы NASA Commercial Crew Integrated Capability включает два испытания системы аварийного спасения.

Pad Abort Test

Взлёт корабля

Испытание проведено 6 мая 2015 года на стартовой площадке SLC-40, мыс Канаверал. Испытуемый Dragon V2 взлетел со стенда, имитирующего верхнюю часть ракеты-носителя Falcon 9. Все 8 двигателей SuperDraco работали в течение 5,5 секунд, затем при достижении апогея в 1187 м был отсоединён грузовой отсек, через несколько секунд были выпущены 2 тормозных, а затем и 3 основных парашюта. Корабль приводнился через 99 секунд после запуска на расстоянии в 1202 м от стартовой площадки. Внутри корабля находился испытательный манекен с многочисленными датчиками, во время аварийного полёта максимальные перегрузки составили 6 g. Dragon V2 достиг скорости 160 км/ч за 1,2 секунды, максимальная скорость составила 555 км/ч.

Тест на прерывание полёта

Испытание планируют провести после первого орбитального беспилотного полёта (SpaceX DM-1), ориентировочно в июне 2019 года. Ранее запланированное на конец 2015 года испытание было отложено, в связи с желанием NASA и компании SpaceX испытать более актуальную версию корабля. При испытаниях системы аварийного спасения будет использован корабль, вернувшийся после испытательного орбитального полёта. Также перенесено место испытания: со стартовой площадки SLC-4-East на базе Ванденберг на стартовую площадку SLC-39A в Космическом центре Кеннеди, с которого и будут запускаться пилотируемые полёты к МКС. Таким образом, условия испытания будут максимально приближены к условиям пилотируемого запуска.

Испытуемый Dragon V2 будет размещён на ракете Falcon 9. Вторая ступень будет идентична полётному оборудованию, за исключение двигателя, который заменят массо-габаритным макетом. После старта ракеты-носителя и достижению ею уровня максимального аэродинамического сопротивления (приблизительно через 1 минуту после запуска) будет запущена система аварийного спасения космического корабля. Приземлится корабль в океан, с использованием парашютов.

Система управляемой посадки

В мае 2014 года компания SpaceX анонсировала планируемую программу испытаний прототипа корабля (кодовое название DragonFly) с целью отработки процесса управляемого приземления с использованием двигателей SuperDraco. В Федеральное управление гражданской авиации США (FAA) был отправлен подробный план программы для получения соответствующих разрешений.

Испытания планировалось проводить на испытательном полигоне SpaceX в МакГрегоре. Программа была рассчитана на 2 года, до 30 проводимых испытаний ежегодно:

  • Propulsive Assist — сбрасывание корабля вертолётом с высоты 3 км, раскрытие парашютов, посадка на двигателях (5 секунд работы двигателей) — 2 испытания;
  • Full Propulsive Landing — сбрасывание корабля вертолётом с высоты 3 км, посадка только на двигателях (5 секунд работы двигателей) — 2 испытания;
  • Propulsive Assist Hopping — взлёт с земли, раскрытие парашютов, посадка на двигателях (25 секунд работы двигателей) — 8 испытаний;
  • Full Propulsive Hopping — взлёт с земли, зависание в воздухе, посадка только на двигателях (25 секунд работы двигателей) — 18 испытаний.

В октябре 2015 испытательный образец корабля Dragon V2 был доставлен в МакГрегор. Этот же корабль использовался при испытания системы аварийного спасения (Pad Abort Test).

24 ноября 2015 года проведено испытание с 5-секундным зависанием корабля в воздухе, в рамках процесса сертификации системы посадки, проводимой NASA по программе Commercial Crew Program. Восемь двигателей SuperDraco работали с суммарной производимой тягой около 145 кН, 1/4 от максимальной тяги корабля.

Планировался переход с парашютной посадки на управляемую после её сертификации, но в июле 2017 года Илон Маск подтвердил, что компания отказалась от управляемой посадки корабля Dragon 2 с использованием двигателей SuperDraco, мотивируясь тем, что сертификация данной системы для пилотируемых полётов потребует огромных усилий. Другой причиной послужило то, что компания отменила миссию корабля Red Dragon, который должен был использовать эти же двигатели для посадки на Марсе.

Источник