Сверхлегкая ракета – двигатель на батарейках

19:53 09/07/2020
Комментарии 1 👁 661

ДУ Rutherford

В обход идти, понятно, не очень-то легко,
довольно неприятно и очень далеко
Айболит 66

В настоящей статье изучается вопрос замены турбонасосного агрегата (ТНА) на электрический привод насосов (ЭН) с питанием от аккумуляторных батарей (АКБ).

Зачем ракете батарейки

Единственный жидкостный ракетный двигатель (ЖРД) с ЭН, слетавший в космос, это Резерфорд (Rutherford) ракеты  Electron компании Rocket Lab. Он оснащен раздельным приводом насосов горючего и окислителя, что позволяет гибко дросселировать его мощность. Но такая схема не является обязательной, привод может быть и общим. Каждый ЖРД снабжен двумя гидроцилиндрами, которые позволяют качать его по двум осям, обеспечивая таким образом управление ракетой. Питание ЭН осуществляется от АКБ. Следует отметить, что АКБ давно и широко применяются на ракетах-носителях (РН) и космических аппаратах, но для питания электрических приводов насосов ЖРД они использованы на СЛРН Electron впервые.

Основной причиной, почему в ракете Electron применены ЭН, является недоступность на рынке коммерческих ТНА. Лидер в области разработки и производства ТНА фирма Barber&Nichols фактически является единственной, кто поставляет ТНА отдельно от ЖРД. Однако она не выпускает ТНА для ЖРД малой тяги. Насосы же и высокооборотные электрические двигатели являются серийной коммерческой продукцией, доступной на рынке, АКБ используются особые, но они тоже серийные.

Пожалуй, единственным подходящим по размерности для СЛРН является ТНА водородного воздушно-реактивного двигателя НК-88, устанавливавшегося в конце 80-х годов на экспериментальный самолёт Ту-155. Данный ТНА при частоте вращения 50 тыс. об/мин может использоваться на водородном НК-88, а при 20 тыс. об/мин – на метановом НК-89. Ценой немалых переделок этот ТНА можно приспособить для метанового ЖРД тягой 1,5 – 2,2 тс .

АКБ – революция закончилась

Химические источники тока основаны на окислительно-восстановительной реакции между элементами.

Литий-ионные батареи – лучший выбор при времени работы до 5 мин. Литий является металлом с предельными характеристиками: самой низкой массой, самым низким электродным потенциалом (–3,05 В) и самой высокой токовой нагрузкой (3,83 А·ч/г). Литий-ионные аккумуляторы появились на рынке в начале 90-х годов. Показано, что необходимо учитывать одновременно два параметра: удельную емкость E/m и удельную мощность P/m (m-масса элемента). Кроме того, важен ток разрядки, т.е. то, как быстро батарея может отдать накопленную энергию (C-rate), т.к. вращение электродвигателя зависит от силы тока. Емкость по току измеряется в С=ампер·час. В настоящее время на литий-ионных серийных АКБ одновременно достигнуты E/m =220 Вт·ч/кг и P/m=2 кВт/кг.

В отдельных тестах достигнуты удельная энергоемкость литий-ионных элементов порядка 1,5 кВт·ч/кг и рекордный ток 20 кА/кг массы электродов . Их гибриды с литий-оксидными Li-Ο2 (которые сами по себе недостаточно мощные, но теоретически могут обладать рекордной емкостью до 5 кВт·ч/кг ) лидируют среди перспективных аналогов по обоим параметрам , но внедрены они могут быть не ранее, чем в течение 10 лет. Это связано с тем, что подача кислорода воздуха в ячейку, содержащую легко воспламеняющийся литий, требует сложных технологических решений, кроме того, имеются проблемы с электродами с высокой плотностью тока. С применением новых материалов анода, например, кремния, можно ожидать дальнейшего прогресса, однако этому препятствуют трудности: разрушение и разуплотнение элементов кремниевого слоя, а также рост литиевых дендритов через электролит.

На режимах высоких нагрузок литиевые батареи начинают перегреваться. Например, на токе 15С (характерный ток разрядки АКБ в ЖРД с ЭН) литий-ионные элементы выходят из строя за 600 с . Также, в условиях стратосферы при нагреве может закипеть растворитель электролита, т.к. ячейки не защищены от падения давления и начинают разбухать. Безопасной считается эксплуатация АКБ при температуре элементов ниже 100°С, иначе могут инициироваться экзотермические реакции . Максимум отдачи энергии наблюдается при температуре 35-41ºС. В сухих сборках без принудительного охлаждения теплоотвод осуществляется медленнее в несколько раз, поэтому высокомощные сборки элементов требуется защищать от перегрева даже для длительности пуска 150-200 с. Ожидается, что контроль температуры батарей хладагентом поможет на 20% повысить их энергоотдачу.

Литий-серные батареи имеют отличные показатели удельной энергии (до 1,6 кВт·ч/кг для малых токов разряда), поэтому их можно рассматривать при длительности работы от 10 мин. Напомним, у СЛРН Electron время работы первой ступени – 2,5 мин, второй ступени – 6,5 мин, т.е. применение литий-серных АКБ потребует изменения траектории выведения на более пологую, что попутно уменьшит гравитационные потери. В литий-серных батареях используются различные степени окисления серы в составе полисульфид-иона, что, вероятно, позволяет достигать множества стабильных промежуточных состояний серного электрода. Максимальный задокументированный ток разряда в лабораторных условиях – 3С для удельной энергии порядка 1 кВт·ч/кг.

Другие авторы полагают, что у потенциально реализуемых изделий ток разряда не превысит 0,2С . В работе для литий-серных АКБ приняты следующие параметры: 1,2 кВт/кг и 350 Вт·ч/кг, приведено их сравнение с литий-ионными и литий-ионными с полимерным электролитом АКБ (литий-полимерных). Сделан вывод, что для применения на СЛРН литий-серные АКБ хуже литий-полимерных.

Для литий-серных лабораторных тестовых микросборок, использующих структурированные наноуглеродные электроды, значение удельной мощности может достигать 10 кВт/кг, как у коммерческих суперконденсаторов, но это, как всегда с нанотехнологиями, дело отдаленного будущего.

Другие типы АКБ – серебряно-цинковые, никель-кадмиевые и никель-металлогидридные, литий-титанатные по отдельным характеристикам могут превосходить литий-полимерные элементы, но по интегральным показателям уступают им.

Прекрасными разрядными характеристиками обладают АКБ на базе титаната лития: они быстро заряжаются и дают мощную отдачу по току, что делает привлекательным их применение в общественном транспорте. Но они очень тяжелые, и это закрывает им путь в космос.

К литий-ионным близки и отчасти их превосходят серебряно-цинковые элементы с емкостью до 0,22 кВт·ч/кг и током разряда до 50C (т.е. удельной мощностью до 10 кВт/кг).

Ближайшими к ним серийно выпускаемыми бюджетными элементами являются никель-кадмиевые и никель-металлогидридные с мощностью разряда до 1 кВт/кг и удельной энергией в пределах до 0,11 кВт·ч/кг.

Гибрид суперконденсатора и элемента питания – «supercapattery» с использованием наноматериалов является перспективным направлением исследований. Сами по себе суперконденсаторы обладают максимально возможной мощностью разряда, превосходящей все известные элементы питания, но их удельная энергоемкость не превышает 10 Вт·ч/кг , что является крайне низким показателем.

Таким образом, их применение целесообразно при времени разряда в несколько секунд, например, при страгивании с места автомобиля в городской среде или других транспортных средств с тяжелым грузом – тепловозов, электровозов, тягачей и т.п. На СЛРН суперконденсаторы могут быть использованы для раскрутки ЭН при запуске ЖРД.

Представляется также целесообразным объединить АКБ и суперконденсаторы в одну сборку. Удельная энергия таких систем в лабораторных условиях уже достигает 200 Вт·ч/кг, а удельная мощность 3 кВт/кг. При использовании ионных жидкостей в качестве электролита уже сейчас достигнута емкость на уровне 90 Вт·ч/кг при комнатной температуре и 136 Вт·ч/кг при 80ºС  с перспективой увеличения до 230 Вт·ч/кг при использовании в качестве электролита LiClO4. Удельная мощность теоретически может достигать 10-20 кВт/кг, что выше, чем у турбокомпрессора.

Для СЛРН гибриды суперконденсаторов с АКБ – supercapattery сегодня уже лучше литий-ионных АКБ, но эта технология находится в самом начале пути своего развития. Кроме того, supercapattery тяготеют к периодичности функционирования заряд/разряд.

Можно сделать заключение, что в обозримом будущем на традиционной ракете могут быть применены только литий-ионные АКБ, причем, наиболее вероятно, с полимерным электролитом. Не следует ожидать улучшения их характеристик более, чем на 25%. Другие типы батарей и топливных элементов не имеют перспектив на классических ракетах-носителях.

При этом необходимо учитывать, что масса элементов – это еще не вся масса АКБ. Так, на гибридных автомобилях масса элементов составляет 0,55 массы АКБ. В перспективе, с учетом возможностей новых материалов и «высоких» аэрокосмических технологий, прогнозируется увеличение этого показателя до 0,7-0,8.

Перспективным направлением исследования являются гибриды supercapattery.

Альтернативные источники питания – а если попробовать в обход?

Как будет показано в следующей статье цикла, даже при самых оптимистичных характеристиках АКБ, ракета с ЭН существенно уступает ракете с ТНА по весовому совершенству. Не существует ли иных обходных путей, которые позволили бы получать электричество на борту в количестве и с параметрами тока, достаточными для привода ЭН?

Топливные элементы (ТЭ) фосфатных, карбонатных, щелочных классов и твердооксидные (ТОТЭ) обладают существенно большей эквивалентной удельной энергоемкостью по сравнение с лучшими АКБ. Как сообщает портал GasWorld, дрон на топливных элементах компании MetaVista с баком жидкого водорода и двигателем FCPM производства Intelligent Energy провел в небе 10 часов 50 минут. Удельная энергоемкость системы составила 1865 Вт·ч/кг. Для сравнения: энергоемкость систем на основе Li-Ion аккумуляторов редко превышает 200 Вт·ч/кг.

ТЭ не могут быть мгновенно введены в действие из-за необходимости разогрева до температур порядка 200-1000ºС, что не является для СЛРН серьезным недостатком. Время подготовки ракеты к старту, в любом случае, составляет несколько часов. Большинство ТЭ требуют подачи чистого водорода, что затрудняет их применение в ЖРД, работающих на углеводородном горючем.

К сожалению, достигнутая удельная мощность серийных ТЭ составляет около 1 кВт/кг, максимум – 1,25 кВт/кг, т.е. существенно ниже, чем у лучших литий-полимерных АКБ. Именно невысокая удельная мощность ограничивает применение ТЭ на борту СЛРН.

Интересными свойствами и способностью работать не только на водороде, но и на углеводородном горючем, высоким КПД преобразования химической энергии в электрическую обладают ТОТЭ и родственные им протон-керамические ТЭ , но они еще тяжелее обычных.

Таким образом, как и в случае литий-серных батарей, применение ТЭ может быть обоснованным при времени работы больше 10 минут, что потребует запуска СЛРН по пологой траектории.

Интересной идеей является прокачка водорода через протонообменную мембрану под давлением , предложенная компанией HyPoint, что позволяет прокачивать через ТЭ в три раза больше водорода, чем в традиционной конструкции – соответственно, увеличивается в три раза его удельная выходная мощность .

Глава компании Алекс Иваненко заявляет, что достигнута удельная мощность 2 кВт/кг. Смущает только то, что компания, перебравшаяся из Сколково в Кремниевую долину, «прославилась» тем, что совместно с небезызвестной сколковской фирмой Бартини под камеры прессы в первом же публичном показе отправила своё чудо техники мордой в сугроб. Очевидная безграмотность конструкции беспилотника Бартини, негативная реакция прессы и насмешки в социальных сетях вызвали специальный пресс-релиз Ассоциации «Аэронет», смысл которого был в том, что профессионалы к этим самодельщинам никакого отношения не имеют.

Сама же идея прокачки водорода под давлением на СЛРН может быть вполне продуктивной, тем более что на борту есть, чем охлаждать ТЭ.

Безгенераторные ТНА в ряде случаев могут быть альтернативой ЭН на АКБ. В безгенераторных водородных ЖРД рекордная энергия теплоотведения водорода, получаемая при охлаждении камеры сгорания и сопла, достаточна для привода турбины ТНА даже на ЖРД малой тяги. Низкие давления и температура перед турбиной позволяют выполнить её конструкцию надежной и легкой.

Так, в КБХА были разработаны безгенераторные ТНА для привода отдельно насоса водорода и отдельно насоса кислорода в ЖРД РД-0146 , а также для первого в мире безгенераторного кислородно-водородного ЖРД Пратт-Уитни Рокетдайн RL10 (США, 1963 г), у которого насосы находятся на одном валу и связаны через редуктор. Применение нового ТНА позволяет расширить диапазон использования двигателя RL10 по тяге – от 5 до 15,6 т вместо 6,7– 11,0 т.

Применение на таких ЖРД ЭН, АКБ и ТЭ лишено всякого смысла. Однако с уменьшением размерности турбины КПД её стремительно падает, площадь, с которой собирается энергия за счет охлаждения камеры сгорания, тоже уменьшается, а технические сложности нарастают.

Получение водорода для ТЭ прямо на борту. На ЖРД с углеводородным горючим для питания ТЭ необходимо использовать дополнительный источник водорода. Для применения в краткосрочных пусках от 5 минут может рассматриваться пара «цинк-перекись водорода» . Экспериментальная сборка достигает плотностей мощности 1,2 Вт/см2 (как в коммерческих топливных элементах), топливом служит цинковый порошок, окисляемый на аноде. Однако такая конструкция ТЭ уступает известным ТНА, работающим за счет реакции разложения перекиси водорода в газогенераторе. Кроме того, позиция Роскосмоса – применение на борту СЛРН перекиси водорода в любых видах нежелательно. Существуют различные твердые порошки, содержащие водород, например, аминоборан и борогидрид лития, которые отдают при нагревании до 300ºС от 13% до 15% по массе водорода. Но они не конкурентоспособны с АКБ по энергоемкости.

Более перспективны жидкие вещества, которые можно использовать для охлаждения камеры сгорания и сопла ЖРД, например – метанол, который при нагревании до 300-350ºС разлагается на синтез-газ (СО+H2). Метанол имеет сравнительно слабые характеристики теплоотбора и как топливо неинтересен.

Аммиак весьма перспективен. Рассматриваются кислородно-керосиново-аммиачные ЖРД , в которых доля аммиака может достигать 35% без потери удельного импульса по сравнению с парой керосин-кислород. При этом температура горения снижается почти на 600 – 1000ºС из-за невысокой теплотворной способности аммиака (меньше, чем у керосина на 30-33%), что упрощает охлаждение камеры сгорания.

Такие характеристики являются следствием высокого значения газовой постоянной у продуктов сгорания смеси керосин-аммиак-кислород, которая на 10% больше, чем у керосина с кислородом. А удельный импульс Iу.и. ∽ (RT)½, где R – газовая постоянная, T – температура. При использовании в паре с жидким кислородом пустотный удельный импульс аммиака составляет порядка 2900 м/с, т.е. чуть меньше, чем у керосина, но в смеси с керосином удельный импульс не ниже.

По интенсивности теплоотбора (при паровой конверсии до 6 МДж/кг) аммиак уступает только водороду, хотя и сильно. Но все остальные углеводородные топлива он превосходит в четыре и более раза (паровая конверсия керосина – 1121 кДж/кг, что соответствует теплосъему 0,7 МВт/м2). По теплопроводности аммиак превосходит керосин в 40 и более раз.

Как хладагент аммиак превосходит и жидкий метан. В последнее время стали появляться публикации, что содержащейся в тугоплавких сплавах никель способствует пиролизу метана уже при температуре около 700ºС , что сопровождается образованием сажи. В упомянутой работе предлагается защищать охлаждаемую поверхность инертным материалом, например, графитом, что достаточно сложно для регенеративного охлаждения с внутренними каналами сложной формы.

Таким образом, аммиак – отличный хладагент: разлагаясь, он дает водород. При температуре 500-600ºС аммиак разлагается на водород и азот в пропорции 1:3. Высокая газовая постоянная и сравнительно низкая температура парогазовой смеси позволяют сделать турбину ТНА простой и эффективной. Аммиак можно использовать и внутри камеры сгорания и сопла для организации завесного охлаждения, при этом он также в 5-6 раз эффективнее керосина. Расчеты показывают, что при умеренных значениях давления в камере сгорания (80-100 атм) и применении турбины ТНА с перепадом давления πт>2, возможно организовать безгенераторную схему с использованием в качестве рабочего тела парогазовый смеси уже на первой ступени, тем более, на высотных и широкодиапазонных соплах.

Аммиак относится к 4 группе опасности, т.е. мало опасен, его утечки благодаря резкому запаху легко обнаруживаются, в этом отношении он гораздо безопаснее водорода. Он летуч, и его разливы вызывают меньшие экологические последствия, чем разливы керосина. Продукты сгорания содержат окислы азота, но в связи с отсутствием в нем углерода, подбор режимов, при которых выбросы NOx минимальные, не представляет проблемы. Следовательно, аммиак можно считать сравнительно безопасной для экологии и персонала добавкой к топливу.

Ацетам – аммиачно-ацетиленовый раствор. Ацетам имеет удельный импульс до 4200 м/с в пустоте и до 4000 м/с на уровне моря. Зависимость удельного импульса от концентрации аммиака в готовой топливной смеси с кислородом и от соотношения окислителя и горючего (Km) приведены на рисунке 8 , где видно, что ацетам существенно превосходит керосин, а при доле аммиака в топливной смеси 15% требует такого же количества кислорода.

Ацетам – высокоэнергетическое топливо, уступающее только водороду. Оно может храниться при температуре минус 40ºС и давлении около 3 атм, что хорошо соответствует условиям наддува баков СЛРН по условиям прочности, когда стартовая тяговооруженность составляет порядка 2. Именно такая тяговооруженность является оптимальной для ракеты с корпусом из углепластика. Можно использовать аммиак для охлаждения, а затем смешивать его с ацетамом. Переход от окислительного газа к нейтральному парогазу снимает целый ряд острых технических проблем и повышает безопасность эксплуатации ЖРД, в том числе при многоразовом использовании. Вдобавок к химической нейтральности, лучше у аммиачной смеси также и работоспособность – газовая постоянная около 60 Дж/кг·град, тогда как для окислительного турбогаза она не превышает 30 Дж/кг·град. Следовательно, смешиваемый с ацетамов парогаз также может использоваться для получения электроэнергии на борту в ТЭ или в качестве рабочего тела для безгенераторного ТНА.

К сожалению, ацетам плохо изучен. Достоверно известно, что относительно безопасными могут быть смеси с парциальным давлением ацетилена в газовой смеси не более 10 атм. Растворимость ацетилена в жидком аммиаке нелинейно расчет с уменьшением температуры. Соответственно, при сжатии раствора, выделяться в газовую фазу будет больше ацетилена. Газообразный ацетилен непредсказуем, коварен и чрезвычайно взрывоопасен. Поскольку он детонирует при сжатии, а также и при нагреве до 500ºС, то совершено непонятно, как поведет его смесь с аммиаком в топливных насосах. Все эти вопросы требуют тщательного изучения и экспериментальной отработки.

С другой стороны, даже смесь ацетилена с аммиаком в пропорции 50-50% превосходит керосин по всем показателям как ракетное горючее и как хладагент. Ацетам является весьма перспективным для применения в ротационно-детонационном двигателе, который при работе на ацетаме и давлении в камере сгорания до 150 атм вообще не требует насосов.

Комбинированная схема с генератором электроэнергии для подзарядки АКБ может быть использована на классической ракете для вариантов, когда отбираемой за счет охлаждения энергии не хватает для привода ТНА. Поскольку удельная мощность электрогенератора в зависимости от частоты вращения составляет 3-5 кВт/кг, то выгоднее использовать для получения энергии генератор, а не ТЭ, в тех случаях, когда требуется высокая удельная мощность, т.е. при классическом вертикальном старте с большим ускорением. Следовательно, мощный электрический генератор, работающий через высокорейтинговые АКБ или, в идеале, через supercapattery, является оптимальным источником тока.

Вполне интересным может быть вариант с термоэмиссионным охлаждением (ТэО), кратко рассмотренным в шестой статье. Напомним, что в типичном случае, термоэмиссионное покрытие может генерировать электрическую мощность 250 кВт/м2 при температурах более 1500К. Защищаемая конструкция охлаждается при этом на 500-700 гр. С нагреваемых участков собирается электроэнергия с КПД преобразования в электричество порядка 50%. Её можно использовать для подзарядки АКБ.

Заключение

В настоящей статье были рассмотрены аккумуляторные батареи различных типов. Показано, что для традиционной сверхлегкой ракеты с быстрым вертикальным стартом наилучшим вариантом на обозримую перспективу являются литий-полимерные элементы. Наиболее перспективным направлением исследований являются гибриды суперконденсаторов и аккумуляторных батарей – supercapattery.

Переход на водород исключает потребность в электронасосах, т.к. безгенераторная схема с использованием паров водорода из рубашки охлаждения ЖРД генерирует достаточно энергии для привода насосов. Применение в качестве горючего смеси керосина с аммиаком и ацетилена с аммиаком представляется хорошей альтернативой водороду. В этом случае может быть реализована безгенераторная схема, в том числе, с выработкой водорода на борту для питания топливных элементов, но более привлекательным с точки зрения удельной массы выглядит привод от турбины электрического синхронного генератора, подзаряжающего аккумуляторные батареи. Данная схема отличается наибольшей гибкостью, поскольку частоты вращения турбины и насосов могут изменяться независимо друг от друга.

Для подзарядки батарей могут использоваться элементы термоэмиссионного охлаждения, которые уступают по эффективности теплоотбора регенеративным системам, использующим керосин, но преобразуют энергию непосредственно в электричество с КПД порядка 50%.

В следующей статье будет приведен весовой анализ ракет с электрическими насосами и турбонасосными агрегатами. Будут рассмотрены варианты различных топлив в сочетании с электрическим приводом.

Благодарности

Автор благодарит за помощь в подготовке статьи и предоставленные материалы сотрудников Научно – Исследовательской Лаборатории Беспилотных авиационно-космических систем (НИЛ БАКТС) БГТУ «Военмех»: Станислава Колосенка, Алексея Колычева и Александра Никитенко.

По материалам:

Павел Булат, заместитель руководителя рабочей группы Аэроспейснет НТИ

От журнала “Всё о Космосе”: ранее мы опубликовали статью “Китайский стартап “Astroprop” провел испытания камеры сгорания ДУ Xinghuo-1”, в которой сообщили о том, что ещё один китайский стартап, под названием “Astroprop” провел тестовые испытания камеры сгорания двигателя Xinghuo-1.

ДУ Xinghuo-1 использует для нагнетания компонентов топлива в камеру сгорания насосный агрегат, который приводится в действие электродвигатем.

Также мы сообщали о том, что концепция РН «Таймыр» была изменена в сторону некоторого развития конструкции, а именно инженеры «Лин Индастриал» отказались от вытеснительной системы подачи топлива в двигатель, выбрав вместо нее электронасосную.

Ирина Дорошенко (Filipok)

Дорогие друзья! Желаете всегда быть в курсе последних событий во Вселенной? Подпишитесь на рассылку оповещений о новых статьях, нажав на кнопку с колокольчиком в правом нижнем углу экрана ➤ ➤ ➤

Источник

One Comment

  1. Владимир Орис:

    Спасибо авторам, журнал стал ещё интереснее после включения в него статей с техническим уклоном. Меня в этой статье заинтересовал такой вопрос, почему нельзя охлаждать литий ионные батареи криогенным топливом, чтобы продлить им жизнь. Окислителем понятно что опасно, но водородом или метаном думаю можно, если включить систему охлаждения в контур за ТН, насосом подачи..В этом случае охлаждение будет работать только тогда, когда ЖРД работает и через аккумуляторы проходит максимальный ток. То есть работа системы охлаждения АБ будет напрямую связана с работой РД.

Добавить комментарий